Resonance sums for Rankin–Selberg products of SLm(Z) Maass cusp forms
نویسنده
چکیده
a r t i c l e i n f o a b s t r a c t Let f and g be Maass cusp forms for SL m (Z) and SL m (Z), respectively, with 2 ≤ m ≤ m. Let λ f ×g (n) be the normalized coefficients of L(s, f × g), the Rankin–Selberg L-function for f and g. In this paper the asymptotics of a Voronoi-type summation formula for λ f ×g (n) are derived. As an application estimates are obtained for the smoothly weighted average of λ f ×g (n) against e(αn β). When β = 1 mm and α is close or equal to ±mm q 1 mm for a positive integer q, the average has a main term of size |λ˜f טg (q)|X 1 2mm + 1 2. Otherwise, when 0 < β < 1 mm , it is shown that this average decays rapidly. This phenomenon is due to the oscillatory nature of the coefficients λ f ×g (n).
منابع مشابه
Rankin-selberg without Unfolding and Bounds for Spherical Fourier Coefficients of Maass Forms
We use the uniqueness of various invariant functionals on irreducible unitary representations of PGL2(R) in order to deduce the classical Rankin-Selberg identity for the sum of Fourier coefficients of Maass cusp forms and its new anisotropic analog. We deduce from these formulas non-trivial bounds for the corresponding unipotent and spherical Fourier coefficients of Maass forms. As an applicati...
متن کاملSubconvexity for Rankin-selberg L-functions of Maass Forms
This is a joint work with Yangbo Ye. We prove a subconvexity bound for Rankin-Selberg L-functions L(s, f⊗g) associated with a Maass cusp form f and a fixed cusp form g in the aspect of the Laplace eigenvalue 1/4 + k2 of f , on the critical line Res = 1/2. Using this subconvexity bound, we prove the equidistribution conjecture of Rudnick and Sarnak on quantum unique ergodicity for dihedral Maass...
متن کاملThe Second Moment of Gl(3)×gl(2) L-functions, Integrated
We consider the family of Rankin-Selberg convolution L-functions of a fixed SL(3,Z) Maass form with the family of Hecke-Maass cusp forms on SL(2,Z). We estimate the second moment of this family of L-functions with a “long” integration in t-aspect. These L-functions are distinguished by their high degree (12) and large conductors (of size T ).
متن کاملOn Some Mean Square Estimates in the Rankin-selberg Problem
An overview of the classical Rankin-Selberg problem involving the asymptotic formula for sums of coefficients of holomorphic cusp forms is given. We also study the function ∆(x; ξ) (0 ≤ ξ ≤ 1), the error term in the Rankin-Selberg problem weighted by ξ-th power of the logarithm. Mean square estimates for ∆(x; ξ) are proved. 1. The Rankin-Selberg problem The classical Rankin-Selberg problem cons...
متن کاملThe central value of the Rankin-Selberg L-functions
The values of L-functions at special points have been the subject of intensive studies. For example, a good positive lower bound for the central value of Hecke L-functions would rule out the existence of the Landau-Siegel zero, see the notable paper [IS]; the nonvanishing of certain Rankin-Selberg L-functions is a crucial ingredient in the current development of the generalized Ramanujan conjec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016